MATH 134A Review: Eigenvalues and Eigenvectors

Facts to Know

An eigenvalue λ and corresponding eigenvector (in the λ -eigenspace) of an $n \times n$ matrix A is
Theorem: the eigenvalues of a triangular matrix are the entries on its main diagonal
Theorem: If \mathbf{v}_1 and \mathbf{v}_2 are two eigenvectors corresponding to distinct eigenvalues λ_1 and λ_2 , then
\mathbf{v}_1 and \mathbf{v}_2 are linearly independent.
A method to find the eigenvalues of a matrix is
A method to find a basis for the eigenspace corresponding to a given eigenvalue is

Examples

 $1.\ \,$ Find one eigenvalue for the following matrix.

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

2. Find a basis for the corresponding eigenspace.

$$A = \begin{pmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{pmatrix}, \qquad \lambda = 2$$